

 1

Augmented-Reality Scratch: A Tangible Programming
Environment for Children

Iulian Radu

Georgia Institute of Technology

Atlanta, GA 30332 USA

iulian@cc.gatech.edu

Blair MacIntyre

Georgia Institute of Technology

Atlanta, GA 30332 USA

blair@cc.gatech.edu

ABSTRACT

In this paper we introduce AR Scratch, the first augmented-reality
(AR) authoring environment designed for children. By adding
augmented-reality functionality to the Scratch programming
platform, this environment allows pre-teens to create programs

that mix real and virtual spaces. Children can display virtual
objects on a real-world space seen through a camera, and they can
control the virtual world through interactions between physical
objects. This paper describes the system design process, which
focused on appropriately presenting the AR technology to the
typical Scratch population (children aged 8-12), as influenced by
knowledge of child spatial cognition, programming expertise, and
interaction metaphors. Evaluation of this environment is proposed,
as well as foreseeable impacts on the Scratch user community.

Author Keywords

augmented reality, children, interaction design, metaphors,
programming environments

ACM Classification Keywords

H.5.1 [Multimedia Information Systems]: Artificial, augmented
and virtual realities, H.5.2. [Information Interfaces and
Presentation]: User interfaces.

INTRODUCTION

Over the years, various researchers and designers have

imagined that Augmented Reality (AR) technology would

be well suited to children’s programming environments. AR

technology allows users to view virtual objects overlaid on

a real-world context, and to control the virtual environment

through direct, tangible interaction with objects tracked in
the physical space. The blurring of the line between real

and artificial can support the creation of fantastical

experiences, such as stories in which otherworldly

characters inhabit the space in front of the reader [4], and

environments, such as ones where music is shaped through

simple physical interactions [11]. Unfortunately, until now,

a significant amount of technical expertise is required for

creating such experiences, an insurmountable barrier to

many potential users. Children, in particular, are both

incredibly creative but lack the technical, mathematical and

abstract thinking skills needed to work with typical AR

programming tools. Thus, they are typically viewed as
consumers, rather than producers, of such rich interactive

experiences.

There exist a variety of programming environments which

allow children to create digital experiences. Typical

environments such as Alice [1], Microworlds LOGO [8],
and Scratch [10], support the creation of applications that

exist within the confines of the computer screen and are

controlled through standard computer interfaces. Other

environments, such as LEGO Mindstorms and

PicoCrickets, allow children programmers to influence

physical robotic objects. However, none of these

environments allows virtual and physical objects to inhabit

the same space.

Our current research introduces the first augmented-reality

programming environment for children. This environment,

using augmented-reality techniques and the ARToolkitPlus
[13] software, supports mixing physical and virtual

environments to create a coherent view of the merged

space. Children see virtual objects overlaid on the real-

world space seen through a camera, and they can control

the virtual world through physical interaction with special

markers that are detected and tracked using the same

camera. By integrating AR technology into an age-

appropriate programming environment and using metaphors

and concepts that match the child’s cognitive level, we hope

to provide children with the functionality necessary to

create such experiences.

DESIGN INFLUENCES

The goal of this work has been to create a programming

environment in which children can author augmented-
reality applications. Rather than design a new programming

environment, we examined a number of successful

programming environments to see if one could be extended

with AR functionality (Alice, LOGO. and Scratch). Each

was evaluated based on a number of criteria, including

programming simplicity (it should be easy for children to

create impressive applications in the specific environment),

spatial simplicity (the environment should put minimal load

on spatial cognition, with 2D being preferred over 3D), and

ease of expansion (the environment should be open to

expansion with AR functionality). The Scratch platform

(see Figure 1) best satisfied our criteria, since it provides a
simple drag-and-drop interface, generates 2D applications,

and it is open-source. Furthermore, Scratch has a well-

developed user community [10] which may be useful in

informing research on tangible and augmented-reality

interfaces, as well as directly benefitting from this research.

Although there is a wide variation of user ages and skills,

the majority of users of Scratch are pre-teens aged 8-12 [7].

We were particularly concerned with how children in this

age range understand 3D augmented reality and tangible
interactions. Early in the design process, we were interested

in understanding what is known about children’s cognitive

abilities, so that we could present the AR technology at an

age-appropriate level.

Figure 1. The Scratch programming environment contains a library of

functions (left-hand column) usable in actor’s programs (middle column),

which execute in the right-hand display.

Spatial Cognition

We looked at the literature on spatial cognition and

tangible-user interaction to see what kinds of spatial

interactions children understand. Spatial cognition literature

informs us that adults can use three types of reference

systems when processing spatial relationships: in the ego-

centric mode, directions and distances are determined by

using the body as the reference point (e.g., the spoon is on

my left); in object-centric mode, the reference point is an

external object (e.g., the spoon is on the left of the fork); in

the environment-centric mode, the environment is used as

reference (e.g., the spoon is north) [9]. The research in [9,6]
reports on the development of spatial cognition in English–

speaking children. In these children, a basic form of object-

centric cognition develops first in the early years, whereby

children are able to segment objects into constituent parts

(such as front and back) and determine if other objects are

near these parts; this occurs even before children are able to

articulate this information [6]. Ego-centric thinking

typically develops after this phase by the age of 5, and full

object-centrism is developed by age 12, whereby children

are able to describe what is in the “line of sight” of an

object [9].

One study of children interacting with an augmented-reality

book [4] found that children of age between 6 and 7 are

adept at controlling 2D actor sprites with handheld paddles.

Problems were detected when motions of physical objects

did not directly map to those of virtual actors – many

children had trouble with a mirror camera image, where

upward motions appeared as downward on the screen.

Based on this literature, we decided that our initial design

should be very conservative, placing minimal demands on

children’s spatial cognition by (1) not adding a 3rd

dimension to the Scratch environment, and (2) continuing
to follow the screen-centric frame of reference. Children

would be able to control actors with motions of physical

objects, but actors would remain in the 2D plane of the

screen; furthermore, spatial properties of physical objects

(such as their rotations, or angles between objects) would

be provided in a screen-centric perspective which is aligned

with the ego-centric perspective of the programmer. Based

on what we find from this first version, we hope to add 3-

dimensional viewing of objects later in the development

process, after we better understand how children perceive

and think about 3D spatial relationships.

Children can control applications using two types of
physical objects: inscribed (shown in Figure 2) and non-

inscribed (shown in Figure 4.c). Inscribed objects contain a

surface pattern which is used by the ARToolkitPlus

software for accurately detecting object position and

orientation. This surface is called a “card” for simplicity.

Playing cards with special surfaces were designed first,

primarily because they are simple, familiar and versatile;

furthermore, they can be easily installed by parents by

printing and sticking the patterns onto typical playing cards.

Knobs were found potentially useful to children because of

their simplicity in affording turning interactions, suitable
for intuitively controlling characteristics such as the size or

color of virtual characters.

Figure 2. Tangible objects for application control: playing cards (left) and

knobs (right).

Non-inscribed objects can also be used to affect program

actors, as Scratch provides functionality for sprites to react
when they touch specific colors. Figure 4.c. shows a Pong

game created on this principle.

Programming Level

Finally, we wished to understand the complexity of

programs created by the majority of Scratch users before

designing an extension to Scratch. By surveying the

applications created by children on the Scratch Forums

website, we found that a majority of programs are driven by

the users moving actor sprites through mouse or keyboard

 3

inputs. Furthermore, behaviors of game sprites are

synchronized through the mechanism of event broadcasting.

Children who create these programs appear to understand

how to integrate environmental events in their programs

(e.g., button presses), and appear to focus on control of

sprite location as a central driver of their applications.

Interaction Metaphors

In integrating AR functionality to this environment, we

closely followed the Scratch model of compartmentalizing
functions. Scratch functions are grouped according to how

they influence the current actor – typical sprite actors have

functions for “Motion”, “Looks”, “Sensing”, etc. Following

this model, we first generated a list of basic functionality

that AR technology offers, then grouped this functionality

in two categories – a set of functions which are in charge of

“Sensing” the real world objects, and a set of functions

which direct sprite “Motion” according to the real world.

The details of these sets of functions are described in the

following section.

To present the functionality to users, we followed two
simple metaphors which can help children conceptualize

the technology in terms of ideas they are already familiar

with. Firstly, we present the Scratch actors as things which

can “stick” to the screen or to cards. When an actor is stuck

to a card, its position changes to follow the position of the

physical card as it appears on the screen. Commands to

move the actor will cause it to move relative to the location

of the card. To make an actor sprite stop following the

physical object, it must be told to stick to the screen.

Secondly, the physical cards are presented as special sprites

in the programming environment. In Scratch, a sprite actor
can sense properties of other sprites, such as position,

orientation, distance, etc. Functions corresponding to

properties of physical cards follow a similar pattern,

whereby a sprite can detect the location, orientation of a

card, or relationship between sets of cards. Conceptualizing

physical cards as virtual sprites should permit a wide range

of existing programmers to grasp this technology.

AUGMENTED FUNCTIONALITY

Augmented-reality technology allows users to perceive

computer-generated output as it is overlaid on real-world

objects, and to control applications through real-world

interactions. AR Scratch thus provides programmers with a

library of functions which cover manipulation of both

output and input.

Output in Reality

Scratch content is currently mixed with physical objects

through two mechanisms. First, input from the computer
camera is by default used as background for the application,

allowing digital activities to be situated in the real-world

space. Second, the programmer can instruct sprites to

follow the position of a trackable card, while preserving the

sprite as a 2D entity on the screen.

Figure 3. Appearance of sprite when it follows a card while staying on the

screen plane (left), when it is projected on the surface of the card (middle),

and when it is perpendicular to the card (right).

We have also constructed functionality to project sprites

onto a plane parallel or perpendicular to physical cards,

permitting sprites to exist as flat entities in a 3D world (see
Figure 3). Furthermore, we envision that cards can be

designed to have multiple reference points where sprites

can be placed (eg: indicators for the “middle”, or “top-right

corner”), and also to indicate scaling factors. These features

can support the creation of “pseudo-3D” applications

without requiring the child to think or program using 3D

concepts.

Control by Physical Interactions

Two sets of functions provide the programmer with

information about the physical world. The first supplies

data about individual objects, such as position, distance

from camera, angles of rotation and tilt. The second gives

information about pairs of objects, such as whether two

cards are touching, as well as angles and distance between
them.

Examples

By combining these simple interactions, children can

quickly create complex applications. Figure 4.a. shows a

drawing application created by programming a sprite to

follow the card and leave a trail colored according to the

card’s rotation. Figure 4.b. shows a flower-growing game,

where the user must first get a raindrop by touching the

physical knob object to a virtual cloud, then tilt the knob

past a certain angle in order to drop the raindrop,

transforming it into a flower. Figure 4.c. illustrates a Pong

game, created by bouncing the star when it hits the color

yellow. Figure 1 shows a game where a dog rests on the

blue card until the user tilts the card while touching the
green card, causing the dog to walk to the green card and

scare the cat.

Figure 4. (a) Paint application. (b) Flowers game. (c) Pong game

 EVALUATION APPROACH

Through several experimental sessions, we intend to study

the extended Scratch environment in middle-school

classrooms and allow children to become design partners in

further developing the project. Our research aim is twofold:

(1) to ensure that the AR technology is presented at a level

appropriate for children’s comprehension, and (2) to

discover functionality which is desired by children but is

not presently made available.

In the process of program development, children will create

mappings between real-world interactions and program

activities by leveraging the library of functions outlined

above. If children are to use AR technology, they must

understand the functionality correctly, and be able to

integrate it into their designs. The studies will determine if

the functionality is presented at the appropriate level of

complexity, and if the applied metaphors are beneficial to

children’s understanding. Additionally, we expect that

children may wish to take advantage of other real-world

interactions which the system does not presently capture,
and that children will generate novel types of applications

using these and existing interactions. We will determine if

and how this functionality can be integrated into the

existing environment.

This knowledge will be extracted through observations of

children playing with the interface, as well as group

interviews. Central to the experimental process will be the

Constructive Interaction (CI) [3] and Peer Tutoring (PT) [5]

methods. The CI approach pairs children into teams which

collaboratively explore a system. In the PT method,

children that have learned to use a technology teach their
knowledge to others. The team aspect of these methods

creates a setting of natural interaction in which children are

likely to be unbiased when communicating their opinions

and thoughts. Both these approaches help to determine the

mental models and conceptualization processes which

children employ while learning new technologies. These

methods are potentially more effective in extracting

cognitive information from children than the Think-Aloud

or one-on-one interview approaches, primarily because

children may have difficulty verbalizing their thoughts or

may need frequent prompting [2,5,3]. The group interview

approach has been selected, over survey or single-person
interview methods, for maximizing the reliability of

answers. It has been reported that children are highly

perceptive of expectations and roles, and will provide

answers as mediated by those perceptions [12].

CONCLUSION AND FUTURE WORK

This paper has presented an augmented reality

programming environment for children, developed by

extending the Scratch platform. The environment brings

AR technology to child programmers by minimizing

cognitive load and leveraging simple interaction metaphors.

In the future, we expect the AR Scratch project to be

integrated into the Scratch platform, and become available

to the Scratch Forums community. It is foreseen that the

user community will generate a variety of applications

which mix digital content with real-world contexts. In these

applications, children will generate mappings between
tangible interactions and behaviors of programs; thus, a set

of frequently-used natural mappings will emerge from the

community. Researchers may also create applications

which make use of novel interaction techniques, and use the

community to determine if and how children grasp these

concepts. In this sense, we expect that the community will

become a research partner for tangible interface research.

REFERENCES

1. Conway, M., Audia, S., Burnette, T., Cosgrove, D., and Christiansen,

K. Alice: lessons learned from building a 3D system for novices.

Proceedings of the SIGCHI conference on Human factors in

computing systems, ACM (2000), 486-493.

2. Donker, A. and Markopoulos, P. A Comparison of Think-aloud,

Questionnaires and Interviews for Testing Usability with Children.

PEOPLE AND COMPUTERS, (2002), 305-316.

3. Druin, A. Cooperative inquiry: developing new technologies for

children with children. Proceedings of the SIGCHI conference on

Human factors in computing systems: the CHI is the limit, ACM

(1999), 592-599.

4. Dünser, A. and Hornecker, E. Lessons from an AR book study.

Proceedings of the 1st international conference on Tangible and

embedded interaction, ACM (2007), 179-182.

5. Höysniemi, J., Hämäläinen, P., and Turkki, L. Using peer tutoring in

evaluating the usability of a physically interactive computer game

with children. Interacting with Computers 15, 2 (2003), 203-225.

6. Judith R. Johnston. Children's verbal representation of spatial

location. In Spatial Cognition. Erlbaum, 1988, 195-206.

7. Levins, Martin. Mitch Resnick at ACEC Canberra 2008. 2008.

http://www.levins.net/users/martin/weblog/4d358/.

8. Logo Computer Systems Inc. LCSI - Solutions - MicroWorlds EX.

http://www.microworlds.com/solutions/mwex.html.

9. Majid, A., Bowerman, M., Kita, S., Haun, D.B.M., and Levinson,

S.C. Can language restructure cognition? The case for space. Trends

in Cognitive Sciences 8, 3 (2004), 108-114.

10. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., and

Resnick, M. Scratch: A Sneak Preview. Proceedings of the Second

International Conference on Creating, Connecting and

Collaborating through Computing, IEEE Computer Society (2004),

104-109.

11. Poupyrev, I., Berry, R., Billinghurst, M., et al. Augmented Reality

Interface for Electronic Music Performance. Proceedings of the

SIGCHI conference on Human factors in computing systems, ACM

(2001), 805-808.

12. Read, J.C. and MacFarlane, S. Using the fun toolkit and other survey

methods to gather opinions in child computer interaction.

Proceedings of the 2006 conference on Interaction design and

children, ACM (2006), 81-88.

13. Wagner, D. and Schmalstieg, D. ARToolKitPlus for Pose Tracking

on Mobile Devices. Computer Vision Winter Workshop, (2007), 6-8.

