CS 538A Project

Iulian Radu 43837004
Virtual Network Monitor

May 03, 2006

Introduction
A virtual machine monitor facilitates interaction between a simulated machine and physical devices; therefore this layer can isolate administrative tools for monitoring and controlling this interaction, without knowledge or modification to the hosted machine. This project implemented a system for remote virtual machine administration with focus on network communication. Network traffic was monitored and possibly filtered by one component, while another allowed remote administration over existing network infrastructure by simulating a UDP server. A visualization component was also developed for the administrator's convenience of managing multiple network machines.

Xen [1] was used as the virtual machine monitor because it has a proved stable opensource resource. The system expands an existing Linux installation to execute paravirtualized operating systems. The guest machine network card driver is modified such that raw packets are interfaced via a ring buffer to the host OS. On the host (domain0) side, a virtual network card is created for each guest machine card and packets are bridged to the physical network. The software modules handling packet transactions on the guest and host side are denoted netfront and netback, respectively.

The monitoring and administration components were inserted at the packet entry and exit points in the netfront component. The insertion point was chosen to be the guest driver since this eased development (modifications required recompilation of a minimal Linux kernel, and only guest machines needed to be restarted to see effects), plus increased educational value (since netfront was implemented as a low level driver in the network stack). Ideally, the modifications would be done in netback, so that intrusions to the guest domain cannot modify the monitoring/administering components; this switch is not considered time consuming to be done after development, since the software components involve just low level manipulation of network packet buffers.

Monitoring and Filtering

The first component to be implemented was network traffic monitoring. The software was required to track sizes of sent and received packets, on an IP address basis. Initially, this required pinpointing the packet entry and exit points within the driver, and expanding driver data to include monitoring statistics. The monitor would then inspect all incoming and outgoing packets, and gather traffic rates by recording the amount of data transmitted from/to external IPs over 3 second intervals.
Netfront behaves as a standard Linux network driver, using alloc_etherdev() to allocate a driver data structure. The structure was therefore expanded to hold send/receive statistics for 30 IP hosts. Packets are transmitted to the host side from the network_start_xmit() method, in the last step down the protocol driver stack, and they are received in netif_poll(), most usually as a result of responding to a hardware interrupt. Network packets are handled in sk_buff structures, which contain a buffer of raw data and pointers within the buffer for headers of various layers (eg: ethernet, IP, TCP). On transmission into the netfront layer, upper layer headers are properly pointed to; however, upon receive the monitoring component has to disassemble the packet and determine layer positions within the buffer. Information on header fields was gathered from [2].

Packet filtering involves matching packet header data with specific IP addresses, and stopping the denied packet's flow through the driver. Currently the packet header data is zeroed such that other layers properly drop the packet due to bad CRC, or simply not transmit to the proper destination.

Administration

The driver has been modified to simulate the existence of a UDP server which can be remotely monitored and configured. All incoming UDP packets to port 555 are stopped and responded to within the netif_poll() method.

The administrator can get a list of the current transmit and receive rates for all monitored IPs, and can tell the driver to start or stop filtering a specific IP. The communication protocol is outlined in the following table (REQ_* marks requests).

	Packet Type
	Opcode
	Data

	REQ_STATUS_ALL
	0x10
	None

	RSP_STATUS_ALL
	0x51
	StatCount (1 byte) – # repetitions of:

 IP (4 bytes) – external IP monitored

 TxRate (2 bytes) – current transmit rate

 RxRate (2 bytes) – current receive rate

	REQ_FILTER_IP
	0x11
	IP (4 bytes) – IP to be filtered

	RSP_FILTER_IP
	0x52
	IP (4 bytes) – IP added to filter list

	REQ_UNFILTER_IP
	0x12
	IP (4 bytes) – IP to unfilter

	RSP_UNFILTER_IP
	0x53
	IP (4 bytes) – IP removed from filter list

When replying, the source and destination IP addresses and UDP ports are swapped, response code and data is written into the UDP data portion of the packet, checksums for UDP, IP and Ethernet layers are recalculated, and the packet is inserted into the network send queue. In practice, the copy of a previous outgoing network packet is used to carry data.
Ethereal [3] network sniffer was used to learn about the contents of network packets and ensure proper transmission to the administrator endpoint.
Visualization

Visualization software is provided to facilitate management of multiple network hosts. The software allows the administrator to observe real time changes in communication rates from multiple machines to various hosts, and to apply filtering operations on the links.
[image: image1.png]=181

le Construct Node About

Add Node,

Add Link

Delete

66.12.155.4

01

44211002
1921

19216802

200.52.34

A standalone mobile agent simulation and visualization tool, VirtualNEMO, was modified for this task. The software originally allowed manipulation of network topology, and was expanded to dynamically monitor multiple nodes and their connections. As more administrative operations are added to the system, modules for management and visualization of resources can be added to this software.
Aftermath

Several issues were unexpectedly time-consuming in the development of this tool. The area of biggest problem was unsuccessful transmission of reply packets from the guest to the administrator, since it was difficult to pinpoint where in the transmission chain (guest network stack, Xen virtual host card, virtual bridge, administrator machine) a packet was dropped. Packet processing on the sender required that the sk_buff structure be properly configured for sending, and all data layers needed checksums recalculated prior to observation by the destination machine. Another problem was the unreliability of UDP transmissions in high traffic environments; to solve this, the visualization tool had to be equipped with methods for bursty retransmission.
I enjoyed learning about various layers of network data, and was surprised at how easy it is to assemble raw network packets. I’m sure that knowing internals of Linux drivers and network stacks will come in handy. What also surprised me is how easy it is to link widely different components of the Linux kernel – there are no namespaces or hierarchical protection when compiling, thus it is very easy to create dependencies and introduce bugs. However, in the network packet processing part of the kernel there are multiple integrity checks, such that invalidly configured data will very quickly crash the kernel.
I didn’t enjoy the fact that the Linux kernel code is scarcely documented. It was difficult to determine from a header file what certain methods were used for and how data structures were altered in the process. Xen code was more thoroughly documented, however documentation for Xen internals was also difficult to find on the Internet.

Further Work

The software can be immediately expanded in several areas. Extracting the monitor and control components to domain0, such that they are completely isolated from the guest machine, should be trivial if one has proper documentation of the netback driver. The monitoring component could be improved by adding more fine grained statistics, on a protocol or even port connection basis, to determine how various services cause network loads. Load balancing could be added to the control component, such that packets are intelligently filtered or delayed in order to achieve a desired network performance, and this activity can even be coordinated between several virtual machines. The administrative range could also expand to monitor and control other resources such as memory, disk and CPU usage. The visualization tool would contain appropriate modules for representing such resources, and could also be improved to manage large scale networks and visualize long term trends in data.
References

1. http://www.xensource.com/
2. http://www.networksorcery.com/enp/protocol/ip.htm
3. http://www.ethereal.com/download.html
4. http://www.labunix.uqam.ca/~jpmf/papers/tr-datatag-2004-1.pdf
